Graph Transformations (higher)

Key info:
$f(x)=$ function of graph also written as y (the line or curve)
$f(x)+2=$ shift graph up 2
$f(x)-2=$ shift graph down 2
$f(x+2)=$ shift graph left 2
$f(x-2)=$ shift graph right 2

Examples:
$f(x)=x$

$f(x)=x$

Here we have line $y=x$ being transformed to $y=x+2$ With straight lines, changes affect both the x and y coordinate.

We can say this graph either shifts up 2 (positive y direction) or shifts left 2 (negative x direction)

Here we have the line $y=x^{2}$ being transformed to $y=(x-2)^{2}$

We describe this transformation as a shift in the positive x direction of 2.

Graph Transformations (higher)

Key info:
$-f(x)=$ reflection in x axis
$f(-x)=$ reflection in y axis
$f(x)=x^{2}$

$$
f(x)=-x^{2}
$$

$$
f(x)=x^{3}
$$

Here we have the line $y=x^{2}$
being transformed to $y=-(x)^{2}$
Please note: $-x^{2} \neq(-x)^{2}$
Due to BIDMAS/BODMAS

This is a reflection in the x axis

Here we have the line $y=x^{3}$ being transformed to $y=(-x)^{3}$

This is a reflection in the y axis

This is also a reflection in the x axis as well because
$-(x)^{3}=(-x)^{3}$

Useful pointers:

- $y=f(x)+a$ translation by vector
- $y=f(x+a)$ translate by vector

